Article ID: 1000-324X(2023)04-0452-09

Fabrication and Microstructure of Gd₂O₂S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H₂SO₄/Gd₂O₃ Molar Ratio

WU Junlin^{1,2}, DING Jiyang^{1,3}, HUANG Xinyou³, ZHU Danyang^{1,2}, HUANG Dong^{1,3}, DAI Zhengfa¹, YANG Wenqin^{4,5}, JIANG Xingfen^{4,5}, ZHOU Jianrong^{4,5}, SUN Zhijia^{4,5}, LI Jiang^{1,2}

(1. Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 4. Spallation Neutron Source Science Center, Dongguan 523803, China; 5. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The Gd₂O₂S:Tb scintillation ceramics is extensively used for neutron radiography and industrial non-destructive testing due to its bright green emission, high intrinsic conversion efficiency and high thermal neutron capture cross-section. However, the existence of Gd₂O₃ secondary phase in Gd₂O₂S ceramics impedes the scintillation property. In this work, The Gd₂O₂S:Tb precursors were synthesized in water-bath with H₂SO₄ and Gd₂O₃ as starting materials. Molar ratio of H₂SO₄ to Gd₂O₃ defined as *n* was adjusted to synthesize the precursors., which influence on the properties of the precursors and powders was studied. Chemical composition of the precursors changes with the increase of *n*, from 2Gd₂O₃·Gd₂(SO₄)₃·xH₂O (*n*<2.00) to Gd₂O₃·2Gd₂(SO₄)₃·xH₂O (2.25 ≤ *n* ≤ 2.75), and to Gd₂O₂S:Tb powders is closely related to the phase composition of the precursor. Increasement of the XEL intensity shows two stages with *n* increase, corresponding to the phase transition of the precursor, respectively. The Gd₂O₂S:Tb scintillation ceramics were therefore fabricated by vacuum pre-sintering and HIP post-treatment. The ceramics were fabricated from the powders prepared with different *n*, achieving high relative density and XEL intensity, except the ceramics fabricated from the powders prepared with the *n*=2.00, 2.25, 2.50. The increase of *n* is beneficial to the removal of the Gd₂O₂S:Tb scintillation ceramics.

Key words: water-bath method; molar ratio of H2SO4 to Gd2O3; Gd2O2S: Tb nanopowder; scintillation ceramics

Inorganic scintillation materials have been applied in many fields such as X-rays medical imaging, high energy physics and industrial manufacturing^[1-5]. Gadolinium oxysulfide (Gd₂O₂S) is an efficient and excellent matrix to produce phosphors and scintillation ceramics for luminescence and scintillation applications^[6-7], due to its wide bandgap (4.6–4.8 eV)^[8], high density (7.34 g/cm³)^[9], and high chemical stability^[10]. However, the Gd₂O₂S single crystal with high optical and scintillation quality,

meeting the requirements of practical application, has not been reported. While, the Gd₂O₂S-based phosphors have attracted considerable attention for decades^[11-14]. For instance, Terbium doped gadolinium oxysulfide (Gd₂O₂S:Tb) phosphor exhibits intensive green emission and high luminous efficiency^[15-16], which makes it widely used for display purposes in TV screens, cathode ray tubes, and X-ray intensifying screens^[17-21]. The Gd₂O₂S:Tb, applied for scintillation screens, mainly includes powder and

吴俊林(1998–), 男, 硕士研究生. E-mail: wujunlin20@mails.ucas.ac.cn

Received date: 2022-09-16; Revised date: 2022-10-13; Published online: 2022-12-30

Foundation item: National Natural Science Foundation of China (12175254, U1832119); National Key R&D Program of China (2021YFE0104800); International Partnership Program of Chinese Academy of Sciences (121631KYSB20200039); International Cooperation Project of Shanghai Science and Technology Commission (20520750200); National Centre for Research and Development (WPC2/1/SCAPOL/2021)

Biography: WU Junlin (1998–), male, Master candidate. E-mail: wujunlin20@mails.ucas.ac.cn

Corresponding author: LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn

李 江, 研究员. E-mail: lijiang@mail.sic.ac.cn

ceramic scintillators^[22-24]. However, for the powder scintillation screen^[25], the poor thermal performance and radiation hardness limit its service lifespan. Due to the boundary scattering and the difference of refractive index among bubbles, powder particles and binders, the light output and optical uniformity are reduced. In contrast, ceramic scintillation screens can solve these problems well and effectively improve the light output. However, it is difficult to obtain high transparent ceramics for the birefringence caused by non-cubic structure^[26].

Gd₂O₂S belongs to hexagonal system (space group P3-m1 and lattice parameters a=b=0.3851 nm, c=0.6664 nm)^[27]. Each oxygen ion is surrounded by three gadolinium ions, while each sulfur ion is coordinated by six gadolinium ions to form a stable structure^[28-29]. However, the binding force of Gd toward S is much lower than that of O according to the hard and soft acid and base (HSAB) theory^[30]. As a result, the secondary phase of Gd₂O₃ is easily produced during the preparation of Gd₂O₂S ceramics. So, avoiding the existence of Gd₂O₃ is the main task of the Gd₂O₂S ceramics fabrication. At present, there are mainly two ways to synthesize Gd₂O₂S powders^[26]. One is to "supplement" the S element into the structure of Gd₂O₃. The other one is to synthesize the precursors which are calcined to provide Gd₂O₂SO₄, and then the Gd₂O₂SO₄ is reduced to Gd₂O₂S powders. In general, the sulfur supplementation method involves complicated procedures, high reaction temperatures and environmentally harmful sulfurization reagents such as S, CS_2 , $H_2S^{[31-32]}$. The method produces micron-sized particles of irregular and uncontrolled morphologies^[33]. The reduction method usually involves mild reaction conditions, fewer by-products, and can obtain powders with smaller particles^[34-35]. The fine precursor powders can react more sufficiently in the reduction process, improving the uniformity of components^[36-37]. Meanwhile, the powders are conducive to the uniformity of ceramics sintering, and can reduce the formation of the secondary phase. The water-bath method is one of the reduction methods, which has the advantages of simple process and harmless by-products. Recently our group used the water-bath method to synthesize Gd₂O₂S powders^[34,36,38]. The morphology of the powders produced by the reduction method depends largely on the morphology of the precursors. The morphology, composition of the precursors can be affected by many factors, such as bathing temperature and time, volume of solution, solution pH and the molar ratio of H_2SO_4 to $Gd_2O_3^{[39-41]}$. The secondary phase of Gd₂O₃ in Gd₂O₂S ceramics is caused by the volatilization of sulfur. So, changing n is an effective strategy to make appropriate sulfur supplement in the process of synthesizing precursors.

Different n produce precursors with different chemical components, which change the morphology and property of the powders.

In this work, n was adjusted to synthesize the precursors in the water-bath method. Gd₂O₂S:Tb nanopowders were obtained via reducing in flowing mixture of argon and hydrogen (H₂-Ar). The chemical composition and phase evolution of the precursors were analyzed in detail. The influence of *n* on the morphology and X-ray excited luminescence (XEL) spectrum of the Gd₂O₂S:Tb powders were investigated. Gd₂O₂S:Tb scintillation ceramics were fabricated by the two-step sintering method comprised of vacuum pre-sintering and hot isostatic pressing (HIP) post-treatment. The influences of n on the chemical composition, morphology and microstructure of the Gd₂O₂S:Tb ceramics were investigated. The microstructure and chemical homogeneity of the obtained ceramics were analyzed by FESEM and EDS. The luminescence properties of the Gd₂O₂S:Tb ceramics were evaluated as well.

1 Experimental

The starting materials were commercial oxide powders: Gd₂O₃ (99.999%, Zhongkai New Materials Co., Ltd., Jining, China), Tb₄O₇ (99.995%, Zhongkai New Materials Co., Ltd., Jining, China) and concentrated H₂SO₄ (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). $Tb(NO_3)_3$ solution was prepared by dissolving Tb_4O_7 in hot nitric acid. Gd₂O₃ was mixed with Tb(NO₃)₃ together in stoichiometric ratios of (Gd_{0.995}Tb_{0.005})₂O₂S. Then dilute H_2SO_4 solutions with different *n* were added to the suspension at 7 $^{\circ}$ C at a dripping speed of 8 mL/min. *n* was adjusted to 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00. After the reaction was conducted at 90 $\,^\circ C$ for 2 h in quartz beaker, the precursors were collected via centrifugation, and then dried in an oven at 70 $^{\circ}$ C for 48 h. The precursors were calcined in a tube furnace under flowing H₂-Ar. The Gd₂O₂S:0.5%Tb (in atomic) powders were uniaxially pressed into pellets of 18 mm in diameter at 30 MPa and then cold isostatically pressed under 250 MPa. For ceramics fabrication, the green pellets were pre-sintered at 1300 °C for 3 h in vacuum and subsequently HIP post-treated at 1450 °C for 3 h under 176 MPa in Ar atmosphere. At last, the samples were double-face polished to 1 mm thickness.

Phase identification was identified by the X-ray diffractometry (XRD, D/max2200 PC, Rigaku, Japan) using Cu K α radiation (λ =0.15406 nm) with a scanning speed of 5 (°)/min in the 2 θ range of 10°–80°. The

morphologies of the reduced powders were observed by the field emission scanning electron microscope (FESEM, SU9000, Hitachi, Japan). The microstructures of the Gd₂O₂S:Tb ceramics were observed by a field emission scanning electron microscope (FESEM, SU8220, Hitachi, Japan). The chemical compositions of the ceramics were analyzed by the energy dispersive spectrum (EDS). X-ray excited luminescence (XEL) spectra were recorded by a homemade XEL spectrometer using a F30III-2 X-ray tube performed at 75 kV voltage and 1.5 mA current with a tungsten target and an Ocean Optics QE65000 collector.

2 Results and discussion

Fig. 1 shows the XRD patterns of the precursors after the reaction of H_2SO_4 and Gd_2O_3 with different *n* in hot water bath at 90 °C for 2 h. For the precursors with n < 2.00, all the precursors with similar diffraction patterns were obtained, indicating that the amount of sulfuric acid is not enough to make the occurrence of precursor phase transition. And the composition of the precursors can be formulated as $2Gd_2O_3 \cdot Gd_2(SO_4)_3 \cdot xH_2O^{[42]}$. However, with the increase of *n*, some significant changes occurred in the diffraction peaks of the precursors, and the diffraction peaks of $Gd_2(SO_4)_3 \cdot 8H_2O$ appear gradually. As reported in an American patent, the composition of the precursor is $Gd_2O_3 \cdot 2Gd_2(SO_4)_3 \cdot xH_2O$ with n=2.00–2.75, but it was not described in detail^[43]. For the precursor with n=3.00, all characteristic diffraction peaks of the precursor correspond well to the $Gd_2(SO_4)_3 \cdot 8H_2O$ (PDF#31-0535). The precursor is consistent with the product of the complete reaction of H₂SO₄ and Gd₂O₃ with stoichiometric ratio of 3 : 1. According to the above results, with the increase of sulfuric acid usage, the proportion of SO_4^{2-} in the precursor increases. Considering the easy loss of S element in the preparation of Gd₂O₂S powders, it is beneficial to replenish the sulfur in the powders.

Fig. 1 XRD patterns of the products prepared with different *n* of H_2SO_4 and Gd_2O_3 in hot water bath at 90 °C for 2 h

Then the precursors were calcined in air at 600 $\,^{\circ}C$ for 3 h, and the phase composition of the calcined products were characterized, as shown in Fig. 2. It can be seen that the diffraction peaks of the products with n < 2.00correspond well to the orthorhombic structured Gd₂O₂SO₄ (PDF#29-0613). For the products with *n*=2.00–2.75, two phases of Gd₂O₂SO₄ and Gd₂(SO₄)₃ appeared after being calcined in air. And the increase of n leads to an increase in the XRD diffraction intensity of $Gd_2(SO_4)_3$, which is due to the appearance of Gd₂(SO₄)₃·8H₂O phase in the precursor. It is noteworthy that the precursor with n=3.00is completely transformed into pure Gd₂(SO₄)₃, because diffraction peaks of the product correspond well to $Gd_2(SO_4)_3$ (PDF#39-0306). The reaction process of the precursors with different n calcined in air can be expressed as:

n<2.00:

$$2\mathrm{Gd}_2\mathrm{O}_3 \cdot \mathrm{Gd}_2(\mathrm{SO}_4)_3 \to 3\mathrm{Gd}_2\mathrm{O}_2\mathrm{SO}_4 \tag{1}$$

 $2.00 \le n \le 2.5$:

$$Gd_2O_3 \cdot 2Gd_2(SO_4)_3 \rightarrow \frac{3}{2}Gd_2O_2SO_4 + \frac{3}{2}Gd_2(SO_4)_3$$
 (2)
n>2.50:

 $Gd_2(SO_4)_3 \cdot 8H_2O \rightarrow Gd_2(SO_4)_3 + 8H_2O$ (3)

Fig. 3 shows the XRD patterns of the Gd₂O₂S:Tb powders with different *n*. After being calcined at 750 °C under hydrogen atmosphere, all diffraction peaks of the powders correspond well to the hexagonal crystal structure of Gd₂O₂S (PDF#26-1422). Although the phase transitions of the precursors calcined in air are different to some extent, the phase compositions of the final powders are almost the same without any secondary phases observed. However, the XRD diffraction intensity of Gd₂O₂S:Tb powders changes with the crystallinity of the precursors, which indicates that the crystallinity of the powders with $n \ge 2.00$ have higher purity compared to others, because of the occurrence of following reactions:

$$Gd_2O_2SO_4 + 4H_2 \rightarrow Gd_2O_2S + 4H_2O$$
(4)

Fig. 2 XRD patterns of the products calcined in air at 600 $^{\circ}$ C for 3 h from the precursors prepared with different *n*

 $Gd_2(SO_4)_3 + 12H_2 \rightarrow Gd_2O_2S + 10H_2O + 2H_2S$ (5) H₂S produced during reduction can not only inhibit the volatilization of S element, but also play a role in

sulfidation, which is beneficial to the preparation of high purity Gd₂O₂S powder. Fig. 4 shows the FESEM micrographs of Gd₂O₂S:Tb

powders with different *n*. It can be seen that all Gd_2O_2S :Tb powders present layered or block structure with severe agglomeration. The fact that the reduced Gd_2O_2S :Tb powder retains the overall morphology of the composition, presenting overlapping and interlaced layered structures. With the component transformation of the precursor (*i.e.* the increase of SO_4^{2-} content in the precursor components), Gd_2O_2S :Tb powders gradually

Fig. 3 XRD patterns of the products calcined in air and reduced in H₂ at 750 $^{\circ}$ C for 2 h from the precursors prepared with different *n*

precursor has been confirmed by our previous work. And it can be found from Fig. 1 and Fig. 4 that the morphology of the Gd_2O_2S :Tb powder is closely related to the phase composition of the precursor. Namely, the composition of the precursor determines the morphology of the reduced powder. For example, all Gd_2O_2S :Tb powders with n < 2.00 have the same chemical show a superposed block structure, which is attributed to

show a superposed block structure, which is attributed to the bonding action of the SO_4^{2-} groups.

The XEL spectra of Gd_2O_2S : Tb powders with different *n* were measured and compared with the commercial micron Gd₂O₂S:Tb powders, as shown in Fig. 5. In Fig. 5(a), the characteristic emission peaks of Tb^{3+} can be observed from the Gd₂O₂S:Tb powders ranging from 350 to 700 nm under X-ray excitation, which are due to transitions from the ${}^{5}D_{3,4}$ excited states to the ${}^{7}F_{J}$ (J=1-6) ground multiples^[35-36,44]. The most prominent transition is in the spectral region of 545 nm (${}^{5}D_{4}$ - ${}^{7}F_{5}$ transition) giving rise to strong green emission. Fig. 5(b) shows the increase of luminous intensity in two stages, corresponding to the phase transition of the precursors respectively. The decrease of defect concentration of the Gd₂O₂S:Tb powders is one of the reasons for the increase of XEL intensity. The increasing proportion of S element in the precursors leads to the formation of more H₂S gas during the reduction, which effectively avoids Gd_2O_3 residue and inhibits the formation of S vacancies in the Gd₂O₂S:Tb powders. In addition, the improvement of

Fig. 4 FESEM morphologies of Gd_2O_2S : Tb powders with different *n* (a) *n*=1.00; (b) *n*=1.25; (c) *n*=1.50; (d) *n*=1.75; (e) *n*=2.00; (f) *n*=2.25; (g) *n*=2.50; (h) *n*=2.75; (i) *n*=3.00

particle crystallization and the growth of particle size of the powders also affect its luminescent properties, as shown in Fig. 3 and Fig. 4. It also can be seen from Fig. 5(b) that the XEL integral intensity in the range of 350-700 nm of Gd₂O₂S:Tb powders with *n*=3.00 is the closest to that of commercial micron powders, reaching 88% of XEL integral intensity of the commercial Gd₂O₂S:Tb powder. And the luminescent properties of the synthesized powder can be further improved by increasing the calcination temperature of the precursor to promote the crystallinity and grain growth.

Fig. 6 shows the relative densities of the Gd₂O₂S:Tb ceramics prepared with different n before and after HIP post-treatment. The relative densities of the pre-sintered ceramics decrease from 97.2% to 78.1% and then increase to 94.5% with *n* increasing from 1.00 to 3.00, corresponding to the morphology of the Gd₂O₂S:Tb powders changes, respectively. The result shows that the sintering activity of the powders is significantly affected by their morphologies. Compared to the Gd₂O₂S:Tb powder with block structure, the layered powders are easier to be broken in the molding process and the densification rate is faster. After the HIP post-treatment, the relative densities of all ceramics are increased. However, Gd₂O₂S:Tb ceramics prepared with n=2.00, 2.25 and 2.50 were still not densified. Therefore, the subsequent work can be considered to introduce the ball milling process to break the agglomeration of the powders in order to obtain high-density ceramics.

The EDS analysis was performed on Gd_2O_2S :Tb ceramics, as shown in Fig. 7. Two kinds of secondary phase can be found on the surface of the Gd_2O_2S :Tb ceramics. From the EDS analysis results, it can be seen that the secondary phase in the white area is Gd_2O_3 . The secondary phase in the black area is aluminum-containing compound, which is introduced from the alumina crucible during the calcination and reduction of the powders. The black area on the ceramic surface

increases significantly when n=3.00, indicating that the precursor of this component is more likely to introduce Al element, so the alumina crucible should be avoided when calcination and reduction of the powders.

The FESEM micrographs of the Gd₂O₂S:Tb ceramics vacuum pre-sintered at 1300 °C for 3 h and HIP post-treated at 1450 °C for 3 h are presented in Fig. 8. It can be seen that when n=2.00, 2.25 and 2.50, there are a lot of pores on the polished ceramics surface, indicating the ceramics are not completely compact. All ceramics have Gd₂O₃ secondary phase on the surface as mentioned above. When n < 2.00, the surface of ceramics has relatively more secondary phase, and the distribution of the secondary phase does not decrease with the increase of *n*. This is because the composition of the precursor is consistent when n < 2.00. The precursor is pure Gd₂O₂SO₄ after air calcination, and S element is not excessive during reduction. When $2.00 \le n \le 2.75$, the distribution content of the secondary phase decreases, which indicates the increase of S element proportion in the powders. The increase of n has a certain effect on the removal of the secondary phase in the ceramics, but theeffect is not significant. When n=3.00, the Gd₂O₃ secondary phase on the ceramic surface decreases obviously.

Fig. 6 Relative densities of Gd_2O_2S :Tb ceramics vacuum pre-sintered at 1300 °C for 3 h and HIP post-treatment at 1450 °C for 3 h fabricated from the powders with different *n*

Fig. 7 FESEM micrograph and EDS patterns (white area) of the Gd_2O_2S :Tb ceramics vacuum pre-sintered at 1300 °C for 3 h and HIP post-treatment at 1450 °C for 3 h fabricated from the powders prepared with n=1.00

Fig. 8 FESEM morphologies of Gd_2O_2S :Tb ceramics fabricated from the powders prepared with different *n* (a) *n*=1.00; (b) *n*=1.25; (c) *n*=1.50; (d) *n*=1.75; (e) *n*=2.00; (f) *n*=2.25; (g) *n*=2.50; (h) *n*=2.75; (i) *n*=3.00

The XEL spectra of Gd_2O_2S :Tb ceramics fabricated from the powders prepared with different *n* are shown in Fig. 9(a). The emission bands of the Gd_2O_2S :Tb ceramics in the range of 350–700 nm accords with the emission peaks of Tb^{3+} . The strongest emission peak centered at 545 nm corresponds to the ${}^{5}D_{4}{}^{-7}F_{5}$ transition^[35,44]. The

0.6

0.4

0.2 0

1.00

1.50

2.00

Molar ratio, n

2.50

3.00

.00

.50

00

500

Wavelength / nm

550

600

650

700

the degree of densification of ceramics increases, the XEL intensity also gradually increases. For the compact ceramics (n=1.00, 1.25, 1.5, 1.75, 2.75 and 3.00), with the increase of n, the XEL intensity of the ceramic has a tendency to improve. But the secondary phase inside the ceramics will greatly reduce the scintillation performance of the ceramics. In addition, the ceramics has a higher XEL intensity when n=3.00, but there is no significant improvement compared with the ceramics fabricated from the powders prepared with other *n*. This is because more Al element may be introduced during the powders preparation, resulting in an increase in the content of aluminum-containing secondary phase in the ceramics.

3 Conclusions

The Gd₂O₂S:Tb precursors were synthesized with different molar ratios of H₂SO₄ to Gd₂O₃ in the hot water-bath. The Gd₂O₂S:Tb powders were obtained by reducing the precursors in H₂-Ar at 750 °C. The chemical composition of the precursors and the products calcined in air changes with the increase of n. The chemical composition of the precursors can be described as 2Gd₂O₃·Gd₂(SO₄)₃·xH₂O (*n*<2.00), Gd₂O₃·2Gd₂(SO₄)₃·xH₂O $(2.25 \le n \le 2.75)$, $Gd_2(SO_4)_3 \cdot 8H_2O$ (*n*=3). After being calcined at 750 °C under a hydrogen atmosphere, all powders form pure phase Gd₂O₂S structure. The morphologies of the Gd₂O₂S:Tb powders are closely related to the phase composition of the precursor. With the increase of n, the XEL intensity of the Gd₂O₂S:Tb powders improves. The increase of the XEL intensity shows two stages, corresponding to the phase transition of the precursors respectively. Gd₂O₂S:Tb scintillation ceramics were fabricated by vacuum pre-sintering and HIP posttreatment in an Ar atmosphere. The ceramics fabricated from the powders prepared with different *n* achieve high relative density except the ceramics fabricated from the powders with block structure (n=2.00, 2.25, 2.50). Only the dense ceramics achieve relatively high XEL intensity. Two kinds of secondary phase which is Gd₂O₃ and aluminum-containing compound can be found on the surface of the Gd₂O₂S:Tb ceramics. The secondary phase seriously reduces the optical quality and scintillation property of the ceramics. The increase of *n* has a certain effect on the removal of the Gd₂O₃ secondary phase from the FESEM morphologies of Gd₂O₂S:Tb ceramics. Therefore, our subsequent work mainly focuses on the elimination of the secondary phase in the ceramics.

References:

- [1] YANAGIDA T. Inorganic scintillating materials and scintillation detectors. Proceedings of the Japan Academy Series B Physical and Biological Sciences, 2018, 94(2): 75.
- [2] VAN EIJK C W E, BESSIÈRE A, DORENBOS P. Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529(1/2/3): 260.
- [3] LI J, XIE T F, KOU H M, et al. Effect of trace SiO2 addition on optical and scintillation property of Pr:Lu₃Al₅O₁₂ ceramics. Journal of Inorganic Materials, 2019, 35(7): 796.
- [4] IKESUE A. Processing of Ceramics: Breakthroughs in Optical Materials. New York: Wiley, 2021: 73-141.
- [5] QU Z X, YU C J, WEI Y T, et al. Thermal conductivity of boron carbide under fast neutron irradiation. Journal of Advanced Ceramics, 2022, 11(3): 482.
- [6] KHARIEKY A A, EBRAHIM SARAEE K R. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd₂O₃, Gd₂O₂S and Gd₂O₂SO₄ nanocrystalline phosphors. Journal of Luminescence, 2020, 220: 116979.
- [7] QIAN B F, WANG Y L, ZHAO Q R, et al. Adjustable multi-color luminescence and energy transfer of capsule-shaped Gd₂O₂S: Tb³⁺, Sm³⁺ phosphors. Journal of Luminescence, 2022, 244: 118715.
- [8] WANG W, KOU H M, LIU S P, et al. Optical and scintillation properties of Gd₂O₂S: Pr, Ce, F ceramics fabricated by spark plasma sintering. Ceramics International, 2015, 41(2): 2576.

(a)

400

450

Intensity / (a.u.)

350

- [9] BLAHUTA S, VIANA B, BESSIÈRE A, et al. Luminescence quenching processes in Gd₂O₂S:Pr³⁺,Ce³⁺ scintillating ceramics. *Optical Materials*, 2011, 33(10): 1514.
- [10] WANG W, KOU H M, LIU S P, *et al.* Comparison of the optical and scintillation properties of Gd₂O₂S: Pr, Ce ceramics fabricated by hot pressing and pressureless sintering. *Optical Materials*, 2015, 42: 199.
- [11] BAGHERI A, REZAEE EBRAHIM SARAEE K, SHAKUR H R, et al. Synthesis and characterization of physical properties of Gd₂O₂S:Pr³⁺ semi-nanoflower phosphor. *Applied Physics A*, 2016, 122(5): 553.
- [12] POPOVICI E J, MURESAN L, HRISTEA-SIMOC A, *et al.* Synthesis and characterisation of rare earth oxysulphide phosphors.
 I. Studies on the preparation of Gd₂O₂S:Tb phosphor by the flux method. *Optical Materials*, 2004, **27(3):** 559.
- [13] ZHAN Y H, AI F R, CHEN F, et al. Intrinsically zirconium-89 labeled Gd₂O₂S:Eu nanoprobes for *in vivo* positron emission tomography and gamma-ray-induced radioluminescence imaging. *Small*, 2016, **12(21)**: 2872.
- [14] TRTIK P, HOVIND J, GRÜNZWEIG C, et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institut-The Neutron Microscope Project. *Physics Procedia*, 2015, 69: 169.
- [15] WANG F, YANG B, ZHANG J C, *et al.* Highly enhanced luminescence of Tb^{3+} -activated gadolinium oxysulfide phosphor by doping with Zn^{2+} ions. *Journal of Luminescence*, 2010, **130(3):** 473.
- [16] CHEN L, WU Y, HUO H Y, et al. Nanoscale Gd₂O₂S:Tb scintillators for high-resolution fluorescent imaging of cold neutrons. ACS Applied Nano Materials, 2022, 5(6): 8440.
- [17] KANDARAKIS I, CAVOURAS D. Experimental and theoretical assessment of the performance of Gd₂O₂S:Tb and La₂O₂S:Tb phosphors and Gd₂O₂S:Tb-La₂O₂S:Tb mixtures for X-ray imaging. *European Radiology*, 2001, **11(6)**: 1083.
- [18] TRTIK P, LEHMANN E H. Progress in high-resolution neutron imaging at the Paul Scherrer Institut-The Neutron Microscope Project. *Journal of Physics: Conference Series*, 2016, 746: 012004.
- [19] YAN X, FERN G R, WITHNALL R, *et al.* Effects of the host lattice and doping concentration on the colour of Tb^{3+} cation emission in Y₂O₂S:Tb³⁺ and Gd₂O₂S:Tb³⁺ nanometer sized phosphor particles. *Nanoscale*, 2013, **5(18)**: 8640.
- [20] GIAKOUMAKIS G E, NOMICOS C D, SANDILOS P X. Absolute efficiency of Gd₂O₂S:Tb screens under fluoroscopic conditions. *Physics in Medicine and Biology*, 1989, **34(6)**: 673.
- [21] WESTPHAL E R, BROWN A D, QUINTANA E C, et al. Visible emission spectra of thermographic phosphors under X-ray excitation. *Measurement Science and Technology*, 2021, **32(9)**: 094008.
- [22] WANG W, LI Y S, KOU H M, et al. Gd₂O₂S: Pr scintillation ceramics from powder synthesized by a novel carbothermal reduction method. *Journal of the American Ceramic Society*, 2015, 98(7): 2159.
- [23] TRTIK P, LEHMANN E H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 788: 67.
- [24] YASUDA R, KATAGIRI M, MATSUBAYASHI M. Influence of powder particle size and scintillator layer thickness on the performance of Gd₂O₂S:Tb scintillators for neutron imaging. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2012, 680: 139.
- [25] KATARIA V, MEHTA D S. Multispectral harvesting rare-earth

oxysulphide based highly efficient transparent luminescent solar concentrator. *Journal of Rare Earths*, 2022, **40**(1): 41.

- [26] HUANG X Y, DING J Y, LI J. Rare earth doped Gd₂O₂S scintillation ceramics. *Journal of Inorganic Materials*, 2021, 36(8): 789.
- [27] DANIEL J H, SAWANT A, TEEPE M, et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers. Sensors and Actuators A-Physical, 2007, 140(2): 185.
- [28] WU G Q, QIN H M, FENG S W, et al. Ultrafine Gd₂O₂S:Pr powders prepared via urea precipitation method using SO₂/SO₄²⁻ as sulfuration agent—a comparative study. *Powder Technology*, 2017, **305:** 382.
- [29] HE C, XIA Z G, LIU Q L. Microwave solid state synthesis and luminescence properties of green-emitting Gd₂O₂S:Tb³⁺ phosphor. *Optical Materials*, 2015, **42:** 11.
- [30] PEARSON R G. Hard and soft acids and bases. Journal of the American Chemical Society, 1963, 85(22): 3533.
- [31] DING Y J, HAN P D, WANG L X, et al. Preparation, morphology and luminescence properties of Gd₂O₂S:Tb with different Gd₂O₃ raw materials. *Rare Metals*, 2015, 38(3): 221.
- [32] SONG Y H, YOU H P, HUANG Y J, *et al.* Highly uniform and monodisperse $Gd_2O_2S:Ln^{3+}$ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties. *Inorganic Chemistry*, 2010, **49(24):** 11499.
- [33] HAN P D, ZHANG L, WANG L X, et al. Investigation on the amounts of Na₂CO₃ and sulphur to obtain pure Y₂O₂S and upconversion luminescence of Y₂O₂S:Er. Journal of Rare Earths, 2011, 29(9): 849.
- [34] LIU Q, PAN H M, CHEN X P, et al. Gd₂O₂S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials, 2019, 94: 299.
- [35] WANG X J, MENG Q H, LI M T, et al. A low temperature approach for photo/cathodoluminescent Gd₂O₂S:Tb (GOS:Tb) nanophosphors. *Journal of the American Ceramic Society*, 2018, 102(6): 3296.
- [36] LIU Q, WU F, CHEN X P, et al. Fabrication of Gd₂O₂S:Pr scintillation ceramics from water-bath synthesized nanopowders. *Optical Materials*, 2020, **104**: 109946.
- [37] WANG X J, WANG X J, WANG Z H, et al. Photo/cathodoluminescence and stability of Gd₂O₂S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. *Journal of the American Ceramic Society*, 2018, **101**(12): 5477.
- [38] PAN H M, LIU Q, CHEN X P, et al. Fabrication and properties of Gd₂O₂S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 2020, 105: 109909.
- [39] WANG X J, LI J G, MOLOKEEV M S, et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)₂O₂SO₄ and (La,RE)₂O₂S phosphors (RE=Pr, Sm, Eu, Tb, and Dy). Chemical Engineering Journal, 2016, **302:** 577.
- [40] WANG X, LI J G, ZHU Q, et al. Facile and green synthesis of (La_{0.95}Eu_{0.05})₂O₂S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials, 2014, 15(1): 014204.
- [41] JIANG P, LI Z P, LU W, et al. The pH value control of morphology and luminescence properties of Gd₂O₂S: Tb³⁺ phosphors. *Materials*, 2022, **15**(2): 646.
- [42] LEPPERT J. Method for Producing Rare Earth Oxysulfide Powder. United States, C01F17/00, US6296824B1. 2001.10.02.
- [43] TERAZAWA S, NITTA H. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method,

Scintillator Array, and Radiation Detector. United States, C09K 11/77, US9896623B2. 2018.02.20.

Photoluminescence and energy transfer in transparent glassceramics based on GdF₃:RE³⁺ (RE = Tb, Eu) nanocrystals. *Journal* of *Rare Earths*, 2019, **37**(**11**): 1137.

[44] PAWLIK N, SZPIKOWSKA-SROKA B, PIETRASIK E, et al.

Gd₂O₂S:Tb 闪烁陶瓷的制备与结构: 水浴合成中 H₂SO₄/Gd₂O₃摩尔比的影响

吴俊林^{1,2},丁继扬^{1,3},黄新友³,朱丹阳^{1,2},黄东^{1,3},代正发¹, 杨文钦^{4,5},蒋兴奋^{4,5},周健荣^{4,5},孙志嘉^{4,5},李江^{1,2}

(1. 中国科学院 上海硅酸盐研究所,透明光功能无机材料重点实验室,上海 201899; 2. 中国科学院大学 材料科学与光电工程中心,北京 100049; 3. 江苏大学 材料科学与工程学院,镇江 212013; 4. 散裂中子源科学中心,东莞 523803; 5. 中国科学院 高能物理研究所,核探测与核电子学国家重点实验室,北京 100049)

摘 要: Gd₂O₂S:Tb 闪烁陶瓷以其明亮的绿色发光、高能量转换效率和高中子俘获截面而广泛应用于中子成像和工业无损检测等领域,但 Gd₂O₂S:Tb 陶瓷中存在的 Gd₂O₃第二相影响其闪烁性能。本工作以 H₂SO₄和 Gd₂O₃为原料,采用水浴法合成 Gd₂O₂S:Tb 前驱体,研究了 H₂SO₄与 Gd₂O₃的摩尔比(*n*)对前驱体和 Gd₂O₂S:Tb 粉体性能的影响。前驱体的化学组成随 *n* 增大而变化: 2Gd₂O₃·Gd₂(SO₄)₃·xH₂O(*n*<2.00)、Gd₂O₃·2Gd₂(SO₄)₃·xH₂O (2.25≤*n*≤ 2.75)和 Gd₂(SO₄)₃·8H₂O(*n*=3.00),经过空气煅烧和氢气还原后,所有的粉体均形成 Gd₂O₂S 相。Gd₂O₂S:Tb 粉体的形貌与前驱体的相组成密切相关,随着 *n* 增大,Gd₂O₂S:Tb 粉体的 XEL 强度增加呈现出两个阶段,对应前驱体的相转变阶段。采用真空预烧结合热等静压烧结制备了 Gd₂O₂S:Tb 陶瓷,相较于 *n* 为 2.00、2.25、2.50,其他 *n* 制备的Gd₂O₂S:Tb 陶瓷都达到了较高的相对密度和 XEL 强度,不同 *n* 制备的陶瓷中都存在 Gd₂O₃第二相,*n* 增大有利于减少陶瓷内部的第二相,为进一步消除 Gd₂O₂S:Tb 陶瓷中的第二相提供了思路。

关 键 词:水浴法; H₂SO₄与 Gd₂O₃摩尔比; Gd₂O₂S:Tb 纳米粉体; 闪烁陶瓷

中图分类号: TQ174 文献标志码: A